《小学数学思想方法解读与教学案例》这本书中汇集了很多一线教师读了王永春所著《小学数学与数学思想方法》之后的读后感、一线教师的解读和教学案例研究。而本书给了我们年轻教师更多的案例,更具有实践操作性,更深地体会到数学思想方法如何在日常的知识教学中潜移默化地渗透给学生。
小学直到高中,很多学生所学的数学知识,在进入社会之后几乎没有什么机会应用了。如崔永远在他的《不过如此》一书中写道:“对我来说,数学是疮疤,数学是泪痕,数学是老寒腿,数学是类风湿,数学是股骨头坏死,数学是心肌缺血,数学是中风······”从他的描述中可知数学知识的学习对他而言很艰难,但不影响他成为优秀的主持人。虽然知识一两年不用就忘记了,但是不管从事什么工作,学习过程中的数学思想和方法随时随地发生作用,使人终生受益。
通过阅读我了解平时所说的“数学思想方法”分为数学思想和数学方法,它们是不同概念。数学思想是对数学知识的本质认识、理性认识。数学方法是指解决问题时的方式和手段。数学思想常常通过数学方法去体现,数学方法又常常反映了某种数学思想。数学思想是数学教学的核心和精髓,教师在讲授数学方法是应该努力反映和体现数学思想,提高学生的数学素养。
数学较高层次的基本思想有三个:抽象思想、推理思想和模型思想。与抽象有关的思想主要有符号化思想、分类思想、集合思想、对应思想、有限与无限思想、变中有不变思想。与推理有关的思想主要有公理化思想、归纳推理、类比推理、化归思想、变换思想、数形结合思想、代换思想、逐步逼近思想。与模型有关的思想主要有简化思想、量化思想、方程思想、函数思想、优化思想、随机思想、统计思想。另外还介绍了数学方法有:分析法、综合法、反证法、穷举法等。
这么多的思想方法不是在课堂最后告诉学生,我们这节课用的是推理的思想、是转化的思想。这样学生只记住了“转化”这个词,里面的内涵并没有落实到个人。因此应在课堂整个知识形成的过程中,让学生们主动地参与、主动地思考,融入到知识的形成过程中,他们才会感悟中形成思想方法。此外,有的老师让学生课后写数学日记,感受数学与生活的联系。并同时通过日记发现学生数学思想方法不健全待改进之处,提醒学生并促进他们学习思想方法的形成。
以上都是自己以后教学中可以学习并践行地方。本书内容丰富,涵盖整个小学阶段,以后还要常读常新。