10月份学习心得

作者:樊燕京 文章来源:本站原创 更新时间:2017-10-31

如何培养学生的数学思想

数学思想是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。

小学数学教材中渗透的数学思想方法主要有:数形结合、集合、对应、分类、函数、极限、化归、归纳、符号化、数学建模、统计、假设、代换、比较、可逆等思想方法。教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。

 下面我就如何向学生渗透这些数学思想方法分别举例说明一下。   

 一、数形结合思想方法

1.先形后数。一年级的小学生刚开始学习数学,是从具体的物体开始认数,从具体形象到抽象。

2.先数后形。如教学排队问题:一年级小同学排队做操,从前往后数,小明排第5,从后往前,小明排第4,这一对共有几人?小同学很容易地将45相加,得出错误的结果。如果让学生用画图的方法解答,用“△”代表排队的小朋友,这道题很容易解决。

二、对应思想

 例如,求一个数比另一个数多(少)几的应用题的数量关系。对二年级学生来说较为抽象。我是这样设计的:苹果有8个,梨有6个,苹果比梨多几个?学生通过用○、△等学具代替苹果、梨摆一摆,或用画一画的方法得到了解决。

 再如,数轴上的点与实数之间的一一对应等把抽象内容的数量关系视觉化、具体化、形象化,化深奥为浅显。同时,鼓励了学生的创新,使学生乐于参与这样的数学活动。

三、分类思想

分类是根据教学对象的本质属性的异同按某种标准,将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类进行分析研究。分类是数学发现的重要手段,在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系渗透着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。

四、化归思想

化归是数学中最普遍使用的一种思想方法。它是通过变形把要解决的问题,化归为某个已经解决的问题,从而求得原问题的解决。其基本思想是:将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过乙问题的解答返回去求得原问题甲的解答。这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,让学生初步学会化归的思想方法。如:教学圆面积的计算方法,这里要推导出圆面积公式,在推导过程中,采用把圆分成若干等份,然后拼成一个近似长方形,从而推导出圆的面积公式。这里把圆剪拼成近似长方形的过程,就是把曲线形化归为直线形的过程。


关闭窗口
打印文档
附件:
    专著学习目录

     
    Copyright? 2018 常州市新北区薛家实验小学 版权所有
    地 址:地址:江苏省常州市新北区薛家镇 邮编:213125 苏ICP备10201501号-2
    联系电话:0519-85951757,85953527 传真:0519-85950502 电子邮件:czxjxx@163.com

    苏公网安备 32041102000057号